Contents

A	About the Author		
Pl	REAN	ABLE	1
1	Fina	ancial Machine Learning as a Distinct Subject	3
	1.1	Motivation, 3	
	1.2	The Main Reason Financial Machine Learning Projects Usually Fail, 4 1.2.1 The Sisyphus Paradigm, 4	1
	1.3	1.2.2 The Meta-Strategy Paradigm, 5 Book Structure, 6	
	1 +)	1.3.1 Structure by Production Chain, 61.3.2 Structure by Strategy Component, 9	
	1.4	1.3.3 Structure by Common Pitfall, 12 Target Audience, 12	
		Requisites, 13	
	1.6	FAQs, 14	
	1.7	Acknowledgments, 18	
	Exer	cises, 19	
	Refe	rences, 20	
	Bibl	iography, 20	
PA	RT 1	DATA ANALYSIS	21
2	Fina	ncial Data Structures	23
	2.1	Motivation, 23	

	2.2	Essential Types of Financial Data, 23	
		2.2.1 Fundamental Data, 23	
		2.2.2 Market Data, 24	
		2.2.3 Analytics, 25	
		2.2.4 Alternative Data, 25	
	2.3	Bars, 25	
		2.3.1 Standard Bars, 26	
		2.3.2 Information-Driven Bars, 29	
	2.4	Dealing with Multi-Product Series, 32	
		2.4.1 The ETF Trick, 33	
		2.4.2 PCA Weights, 35	
		2.4.3 Single Future Roll, 36	
	2.5	Sampling Features, 38	
		2.5.1 Sampling for Reduction, 38	
		2.5.2 Event-Based Sampling, 38	
	Exe	rcises, 40	
	Refe	erences, 41	
3	Lab	eling	43
	3.1	Motivation, 43	
	3.2	The Fixed-Time Horizon Method, 43	
	3.3	Computing Dynamic Thresholds, 44	
	3.4	The Triple-Barrier Method, 45	
	3.5	Learning Side and Size, 48	
	3.6	Meta-Labeling, 50	
	3.7	How to Use Meta-Labeling, 51	
	3.8	The Quantamental Way, 53	
	3.9	Dropping Unnecessary Labels, 54	
	Exe	rcises, 55	
	Bibl	iography, 56	
4	Sam	ple Weights	5 9
	4.1	Motivation, 59	
	4.2	Overlapping Outcomes, 59	
	4.3	Number of Concurrent Labels, 60	
	4.4	Average Uniqueness of a Label, 61	
	4.5	Bagging Classifiers and Uniqueness, 62	
		4.5.1 Sequential Bootstrap, 63	
		4.5.2 Implementation of Sequential Bootstrap, 64	

		4.5.3 A Numerical Example, 65	
		4.5.4 Monte Carlo Experiments, 66	
	4.6	Return Attribution, 68	
	4.7	Time Decay, 70	
	4.8	Class Weights, 71	
	Exer	cises, 72	
	Refe	rences, 73	
	Bibli	iography, 73	
5	Frac	tionally Differentiated Features	75
	5.1	Motivation, 75	
	5.2	The Stationarity vs. Memory Dilemma, 75	
	5.3	Literature Review, 76	
	5.4	The Method, 77	
		5.4.1 Long Memory, 77	
		5.4.2 Iterative Estimation, 78	
		5.4.3 Convergence, 80	
	5.5	Implementation, 80	
		5.5.1 Expanding Window, 80	
		5.5.2 Fixed-Width Window Fracdiff, 82	
	5.6	Stationarity with Maximum Memory Preservation, 84	
	5.7	Conclusion, 88	
	Exer	cises, 88	
	Refe	erences, 89	
	Bibl	iography, 89	
PA	RT 2	MODELLING	91
5	Ense	emble Methods	93
	6.1	Motivation, 93	
	6.2	The Three Sources of Errors, 93	
	6.3	Bootstrap Aggregation, 94	
		6.3.1 Variance Reduction, 94	
		6.3.2 Improved Accuracy, 96	
		6.3.3 Observation Redundancy, 97	
	6.4	Random Forest, 98	
	6.5	Boosting, 99	

XII

	6.6	Bagging vs. Boosting in Finance, 100				
	6.7	Bagging for Scalability, 101				
		Exercises, 101 References, 102				
		iography, 102				
	D 101	1051upiij, 102				
7	Cro	ss-Validation in Finance	103			
	7.1	Motivation, 103				
	7.2	The Goal of Cross-Validation, 103				
	7.3	Why K-Fold CV Fails in Finance, 104				
	7.4	A Solution: Purged K-Fold CV, 105				
		7.4.1 Purging the Training Set, 105				
		7.4.2 Embargo, 107				
		7.4.3 The Purged K-Fold Class, 108				
	7.5	Bugs in Sklearn's Cross-Validation, 109				
	Exer	cises, 110				
	Bibl	iography, 111				
3	Feat	ure Importance	113			
	8.1	Motivation, 113				
	8.2	The Importance of Feature Importance, 113				
	8.3	Feature Importance with Substitution Effects, 114				
		8.3.1 Mean Decrease Impurity, 114				
		8.3.2 Mean Decrease Accuracy, 116				
	8.4	Feature Importance without Substitution Effects, 117				
		8.4.1 Single Feature Importance, 117				
		8.4.2 Orthogonal Features, 118				
	8.5	Parallelized vs. Stacked Feature Importance, 121				
	8.6	Experiments with Synthetic Data, 122				
	Exer	cises, 127				
	Refe	rences, 127				
)	Нур	er-Parameter Tuning with Cross-Validation	129			
	9.1	Motivation, 129				
	9.2	Grid Search Cross-Validation, 129				
	9.3	Randomized Search Cross-Validation, 131				
		9.3.1 Log-Uniform Distribution, 132				
	9.4	Scoring and Hyper-parameter Tuning, 134				
		-				

COI	NTENTS		xiii
	Exerci	ses, 135	
		ences, 136	
		graphy, 137	
		D	
PA:	RT 3	BACKTESTING	139
10	Bet S	Sizing	141
	10.1	Motivation, 141	
	10.2	Strategy-Independent Bet Sizing Approaches, 141	
	10.3	Bet Sizing from Predicted Probabilities, 142	
	10.4	Averaging Active Bets, 144	
	10.5	Size Discretization, 144	
	10.6	Dynamic Bet Sizes and Limit Prices, 145	
	Exer	cises, 148	
	Refe	ences, 149	
	Bibli	ography, 149	
1	The 1	Dangers of Backtesting	151
	11.1	Motivation, 151	
	11.2	Mission Impossible: The Flawless Backtest, 151	
	11.3	Even If Your Backtest Is Flawless, It Is Probably Wrong, 152	
	11.4	Backtesting Is Not a Research Tool, 153	
	11.5	A Few General Recommendations, 153	
	11.6	Strategy Selection, 155	
	Exerc	eises, 158	
	Refer	ences, 158	
	Bibli	ography, 159	
2	Back	testing through Cross-Validation	161
	12.1	Motivation, 161	
	12.2	The Walk-Forward Method, 161	
		12.2.1 Pitfalls of the Walk-Forward Method, 162	
	12.3	The Cross-Validation Method, 162	
	12.4	The Combinatorial Purged Cross-Validation Method, 163	
		12.4.1 Combinatorial Splits, 164	
		12.4.2 The Combinatorial Purged Cross-Validation Backtesting Algorithm, 165	

12.4.3 A Few Examples, 165

XIV

12.5 How Combinatorial Purged Cross-Validation Addresses

		Backtest Overfitting, 166	
	Exerc	eises, 167	
	Refer	rences, 168	
13	Back	ktesting on Synthetic Data	
	13.1	Motivation, 169	
	13.2	Trading Rules, 169	
	13.3	The Problem, 170	
	13.4	Our Framework, 172	
	13.5	Numerical Determination of Optimal Trading Rules, 173	
		13.5.1 The Algorithm, 173	
		13.5.2 Implementation, 174	
	13.6	Experimental Results, 176	
		13.6.1 Cases with Zero Long-Run Equilibrium, 177	
		13.6.2 Cases with Positive Long-Run Equilibrium, 180	
		13.6.3 Cases with Negative Long-Run Equilibrium, 182	
	13.7	Conclusion, 192	
	Exerc	ises, 192	
	Refer	ences, 193	
14	Back	test Statistics	195
	14.1	Motivation, 195	
	14.2	Types of Backtest Statistics, 195	
	14.3	General Characteristics, 196	
	14.4	Performance, 198	
		14.4.1 Time-Weighted Rate of Return, 198	
	14.5	Runs, 199	
		14.5.1 Returns Concentration, 199	
		14.5.2 Drawdown and Time under Water, 201	
		14.5.3 Runs Statistics for Performance Evaluation, 201	
	14.6	Implementation Shortfall, 202	
	14.7	Efficiency, 203	
		14.7.1 The Sharpe Ratio, 203	
		14.7.2 The Probabilistic Sharpe Ratio, 203	
		14.7.3 The Deflated Sharpe Ratio, 204	
		14.7.4 Efficiency Statistics, 205	
	14.8	Classification Scores, 206	
	14.9	Attribution, 207	

CONTENTS

	Exercises, 208 References, 209 Bibliography, 209	
5	Understanding Strategy Risk	211
	15.1 Motivation, 211	
	15.2 Symmetric Payouts, 211	
	15.3 Asymmetric Payouts, 213	
	15.4 The Probability of Strategy Failure, 216	
	15.4.1 Algorithm, 217	
	15.4.2 Implementation, 217	
	Exercises, 219	
	References, 220	
6	Machine Learning Asset Allocation	221
	16.1 Motivation, 221	
	16.2 The Problem with Convex Portfolio Optimization, 221	
	16.3 Markowitz's Curse, 222	
	16.4 From Geometric to Hierarchical Relationships, 223	
	16.4.1 Tree Clustering, 224	
	16.4.2 Quasi-Diagonalization, 229	
	16.4.3 Recursive Bisection, 229	
	16.5 A Numerical Example, 231	
	16.6 Out-of-Sample Monte Carlo Simulations, 234	
	16.7 Further Research, 236	
	16.8 Conclusion, 238	
	Appendices, 239	
	16.A.1 Correlation-based Metric, 239	
	16.A.2 Inverse Variance Allocation, 239	
	16.A.3 Reproducing the Numerical Example, 240	
	16.A.4 Reproducing the Monte Carlo Experiment, 242	
	Exercises, 244	
	References, 245	
AJ	RT 4 USEFUL FINANCIAL FEATURES	247
7	Structural Breaks	249
	17.1 Motivation, 249	
	17.2 Types of Structural Break Tests, 249	
_	Structural Breaks 17.1 Motivation, 249	

xvi

17.3 CUSUM Tests, 250

		17.3.1	Brown-Durbin-Evans CUSUM Test on Recursive Residuals, 250	
		17.3.2	Chu-Stinchcombe-White CUSUM Test on Levels, 251	
	17.4	Explos	iveness Tests, 251	
		17.4.1	Chow-Type Dickey-Fuller Test, 251	
		17.4.2	Supremum Augmented Dickey-Fuller, 252	
		17.4.3	Sub- and Super-Martingale Tests, 259	
	Exerc	cises, 26	1	
	Refer	ences, 2	61	
18	Entr	opy Feat	ures	263
	18.1	Motiva	tion, 263	
	18.2	Shanno	on's Entropy, 263	
	18.3	The Ph	ig-in (or Maximum Likelihood) Estimator, 264	
	18.4	Lempe	l-Ziv Estimators, 265	
	18.5	Encodi	ng Schemes, 269	
		18.5.1	Binary Encoding, 270	
		18.5.2	Quantile Encoding, 270	
		18.5.3	Sigma Encoding, 270	
	18.6	Entropy	y of a Gaussian Process, 271	
	18.7	Entropy	y and the Generalized Mean, 271	
	18.8	A Few	Financial Applications of Entropy, 275	
		18.8.1	Market Efficiency, 275	
		18.8.2	Maximum Entropy Generation, 275	
		18.8.3	Portfolio Concentration, 275	
		18.8.4	Market Microstructure, 276	
	Exerc	ises, 27	7	
	Refer	ences, 2	78	
	Biblio	ography,	279	
19	Micro	ostructu	ral Features	281
	19.1	Motiva	tion, 281	
	19.2	Review	of the Literature, 281	
	19.3	First G	eneration: Price Sequences, 282	
		19.3.1	The Tick Rule, 282	
		19.3.2	The Roll Model, 282	

		19.3.3	High-Low Volatility Estimator, 283	
		19.3.4	Corwin and Schultz, 284	
	19.4	Second	Generation: Strategic Trade Models, 286	
		19.4.1	Kyle's Lambda, 286	
		19.4.2	Amihud's Lambda, 288	
		19.4.3	Hasbrouck's Lambda, 289	
	19.5	Third G	eneration: Sequential Trade Models, 290	
		19.5.1	Probability of Information-based Trading, 290	
		19.5.2	Volume-Synchronized Probability of Informed Trading, 292	
	19.6	Additio	nal Features from Microstructural Datasets, 293	
		19.6.1	Distibution of Order Sizes, 293	
		19.6.2	Cancellation Rates, Limit Orders, Market Orders, 293	
		19.6.3	Time-Weighted Average Price Execution Algorithms, 29	94
		19.6.4	Options Markets, 295	
		19.6.5	Serial Correlation of Signed Order Flow, 295	
	19.7	What Is	Microstructural Information?, 295	
	Exerc	ises, 296	5	
	Refer	ences, 29	98	
PAI	RT 5	HIGH-I	PERFORMANCE COMPUTING RECIPES	301
20	Multi	iprocessi	ng and Vectorization	303
	20.1	Motivat	tion, 303	
	20.2	Vectoria	zation Example, 303	
	20.3	Single-	Thread vs. Multithreading vs. Multiprocessing, 304	
	20.4	Atoms	and Molecules, 306	
		20.4.1	Linear Partitions, 306	
		20.4.2	Two-Nested Loops Partitions, 307	
	20.5	•	ocessing Engines, 309	
		20.5.1	Preparing the Jobs, 309	
		20.5.2	Asynchronous Calls, 311	
			Unwrapping the Callback, 312	
		20.5.4	Pickle/Unpickle Objects, 313	
			Output Reduction, 313	
	20.6	Multipr	ocessing Example, 315	

Exercises, 316

xviii CONTENTS

Reference, 317

	Biblio	ography,	317	
21	Brute	e Force a	nd Quantum Computers	319
	21.1	Motiva	tion, 319	
	21.2	Combin	natorial Optimization, 319	
	21.3	The Ob	jective Function, 320	
	21.4	The Pro	oblem, 321	
	21.5	An Inte	ger Optimization Approach, 321	
		21.5.1	Pigeonhole Partitions, 321	
		21.5.2	Feasible Static Solutions, 323	
		21.5.3	Evaluating Trajectories, 323	
	21.6	A Num	erical Example, 325	
		21.6.1	Random Matrices, 325	
		21.6.2	Static Solution, 326	
		21.6.3	Dynamic Solution, 327	
	Exerc	cises, 32	7	
	Refer	ences, 3	28	
22	Tech	nologies	nance Computational Intelligence and Forecasting and Horst D. Simon	329
	22.1	Motiva	tion, 329	
	22.2	Regulat	tory Response to the Flash Crash of 2010, 329	
	22.3	Backgr	ound, 330	
	22.4	HPC H	ardware, 331	
	22.5	HPC So	oftware, 335	
		22.5.1	Message Passing Interface, 335	
		22.5.2	Hierarchical Data Format 5, 336	
		22.5.3	In Situ Processing, 336	
		22.5.4	Convergence, 337	
	22.6	Use Ca	ses, 337	
		22.6.1	Supernova Hunting, 337	
		22.6.2	Blobs in Fusion Plasma, 338	
		22.6.3	Intraday Peak Electricity Usage, 340	
		22.6.4	The Flash Crash of 2010, 341	
		22.6.5	Volume-synchronized Probability of Informed Trading Calibration, 346	

CONTENTS	xix
COLLEGE	1441

22.6.6	Revealing High Frequency Events with Non-uniform
	Fast Fourier Transform, 347

- 22.7 Summary and Call for Participation, 349
- 22.8 Acknowledgments, 350 References, 350

Index 353