Data Envelopment Analysis

Second Edition

DATA ENVELOPMENT ANALYSIS

A Comprehensive Text with Models, Applications, References and DEA-Solver Software

Second Edition

WILLIAM W. COOPER University of Texas at Austin, U.S.A.

LAWRENCE M. SEIFORD University of Michigan, U.S.A.

KAORU TONE National Graduate Institute for Policy Studies, Japan

William W. Cooper University of Texas, USA Lawrence M. Seiford University of Michigan, USA

Kaoru Tone National Graduate Institute for Policy Studies, Japan

Library of Congress Control Number: 2006932712

ISBN-10: 0-387-45281-8 (HB) ISBN-10: 0-387-45283-4 (e-book) ISBN-13: 978-0387-45281-4 (HB) ISBN-13: 978-0387-45283-8 (e-book)

Printed on acid-free paper.

© 2007 by Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now know or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if the are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

987654321

springer.com

To

Ruth, Bev and Michiko

Contents

Lis	List of Tables		xvii
Lis	st of I	Figures	xxi
Pr	eface		xxv
1.	GEN	IERAL DISCUSSION	1
	1.1	Introduction	1
	1.2	Single Input and Single Output	2
	1.3	Two Inputs and One Output Case	6
	1.4	One Input and Two Outputs Case	8
	1.5	Fixed and Variable Weights	12
	1.6	Summary and Conclusion	13
	1.7	Problem Supplement for Chapter 1	15
2.	BAS	IC CCR MODEL	21
	2.1	Introduction	21
	2.2	Data	22
	2.3	The CCR Model	23
	2.4	From a Fractional to a Linear Program	23
	2.5	Meaning of Optimal Weights	25
	2.6	Explanatory Examples	25
		2.6.1 Example 2.1 (1 Input and 1 Output Case)	26
		2.6.2 Example 2.2 (2 Inputs and 1 Output Case)	27
	2.7	Illustration of Example 2.2	30
	2.8	Summary of Chapter 2	32
	2.9	Selected Bibliography	33
	2.10	Problem Supplement for Chapter 2	34
3.	CCR	MODEL AND PRODUCTION CORRESPONDENCE	41
	3.1	Introduction	41
	3.2	Production Possibility Set	42
	3.3	The CCR Model and Dual Problem	43
	3.4	The Reference Set and Improvement in Efficiency	47

viii DATA ENVELOPMENT ANALYSIS

	3.5	Theorems on CCR-Efficiency	48
	3.6	Computational Aspects of the CCR Model	50
		3.6.1 Computational Procedure for the CCR Model	50
		3.6.2 Data Envelopment Analysis and the Data	52
		3.6.3 Determination of Weights (=Multipliers)	52
		3.6.4 Reasons for Solving the CCR Model Using the Dual (DLP_o)	52
	3.7	Example	53
	3.8	The Output-Oriented Model	58
	3.9	An Extension of the Two Phase Process in the CCR Model	60
	3.10	Discretionary and Non-Discretionary Inputs	63
	3.11	Summary of Chapter 3	68
	3.12	Notes and Selected Bibliography	68
	3.13	Related DEA-Solver Models for Chapter 3	70
	3.14	Problem Supplement for Chapter 3	71
4.	ALT	ERNATIVE DEA MODELS	87
	4.1	Introduction	87
	4.2	The BCC Models	89
		4.2.1 The BCC Model	91
		4.2.2 The Output-oriented BCC Model	93
	4.3	The Additive Model	94
		4.3.1 The Basic Additive Model	94
		4.5.2 Translation invariance of the Additive Model	91
	4.4	A Slacks-based Measure of Efficiency (SBM)	99 00
		4.4.2 Interpretation of SBM as a Product of Input and Output Inefficiencies 10	01
		4.4.3 Solving SBM	01
		4.4.4 SBM and the CCR Measure 10	03
		4.4.5 The Dual Program of the SBM Model 10	04
		4.4.6 Oriented SBM Models 10	05
		4.4.7 A Weighted SBM Model 10	05
		4.4.8 Decomposition of Inefficiency 10	06 06
		4.4.9 Numerical Example (SBM)	90
	4.5	A Hybrid Measure of Efficiency (Hybrid)	06
		4.5.1 A Hybrid Measure 10	J1 J1
		4.5.3 Comparisons with the CCR and SBM Models	10
		4.5.4 An Illustrative Example 11	11
	4.6	Russell Measure Models	12
	4.7	Summary of the Basic DEA Models 1.	14
	4.8	Summary of Chapter 4	16
	4.9	Notes and Selected Bibliography 1.	17
	4.10	Appendix: Free Disposal Hull (FDH) Models 11	17
	4.11	Related DEA-Solver Models for Chapter 4	19
	4.12	Problem Supplement for Chapter 4	20

			Contents i	х
5.	RET	URNS TO SCALE	13	;1
	5.1	Introduction	13	51
	5.2	Geometric Portrayals in DEA	13	4
	5.3	BCC Returns to Scale	13	6
	5.4	CCR Returns to Scale	13	8
	5.5	Most Productive Scale Size	14	3
	5.6	Further Considerations	14	7
	5.7	Relaxation of the Convexity Condition	15	0
	5.8	Decomposition of Technical Efficiency	15	2
		5.8.1 Scale Efficiency	15	2
		5.8.2 Mix Efficiency	15	4
		5.8.3 An Example of Decomposition of Technical Efficiency	15	5
	5.9	An Example of Returns to Scale Using a Bank Merger Simulation	15	6
		5.9.1 Background 5.9.2 Efficiencies and Returns to Scale	15	0 6
		5.9.3 The Effects of a Merger	15	9
	5.10	Summary	16	2
	5.11	Additive Models	16	2
	5.12	Multiplicative Models and "Exact" Elasticity	16	5
	5.13	Summary of Chapter 5	17	0
	5.14	Appendix: FGL Treatment and Extensions	17	1
	5.15	Related DEA-Solver Models for Chapter 5	17	2
	5.16	Problem Supplement for Chapter 5	17	3
6.	MOE	DELS WITH RESTRICTED MULTIPLIERS	17	7
	6.1	Introduction	17	7
	6.2	Assurance Region Method	17	8
		6.2.1 Formula for the Assurance Region Method	17	8
		6.2.2 General Hospital Example	18	1
		6.2.4 On Determining the Lower and Loper Bounds	18	3 2
	63	Another Assurance Region Model	18	5
	6.4	Cone-Ratio Method	18	6
	0.4	6.4.1 Polyhedral Convex Cone as an Admissible Region of Weigh	hts 18	6
		6.4.2 Formula for Cone-Ratio Method	18	7
		6.4.3 A Cone-Ratio Example	18	8
		6.4.4 How to Choose Admissible Directions	18	9
	6.5	An Application of the Cone-Ratio Model	18	9
	6.6	Negative Slack Values and Their Uses	19-	4
	6.7	A Site Evaluation Study for Relocating Japanese Government Age	encies out	
		of lokyo	19	6
		6.7.2 The Main Criteria and their Hierarchy Structure	19	0
		6.7.3 Scores of the 10 Sites with respect to the 18 Criteria	19	8
		6.7.4 Weights of the 18 Criteria by the 18 Council Members (Ev	valuators) 19	9
		6.7.5 Decision Analyses using Averages and Medians	20	1

x DATA ENVELOPMENT ANALYSIS

		6.7.6 Decision Analyses using the Assurance Region Model		201
		6.7.7 Evaluation of "Positive" of Each Site		202
		6.7.8 Evaluation of "Negative" of Each Site		202
		6.7.10 Decision by the Council		203
		6.7.11 Concluding Remarks		203
	6.8	Summary of Chapter 6		205
	6.9	Notes and Selected Bibliography		206
	6.10	Related DEA-Solver Models for Chapter 6		206
	6.11	Problem Supplement for Chapter 6		207
7.	NON	I-DISCRETIONARY AND CATEGORICAL VARIABLES		215
	7.1	Introduction		215
	7.2	Examples		217
	7.3	Non-controllable. Non-discretionary and Bounded Variable Mo	odels	219
		7.3.1 Non-controllable Variable (NCN) Model		219
		7.3.2 An Example of a Non-Controllable Variable		220
		7.3.3 Non-discretionary Variable (NDSC) Model		222
		7.3.4 Bounded Variable (BND) Model		224
		7.3.5 An Example of the Bounded Variable Model		224
	7.4	DEA with Categorical DMUs		227
		7.4.1 An Example of a Hierarchical Category		227
		7.4.2 Solution to the Categorical Model		228
		7.4.3 Extension of the Categorical Model		229
	7.5	Comparisons of Efficiency between Different Systems		231
		7.5.1 Formulation		231
		7.5.2 Computation of Efficiency		232
		7.5.3 Illustration of a One Input and Two Output Scenario		232
	7.6	Rank-Sum Statistics and DEA		233
		7.6.1 Rank-Sum-Test (Wilcoxon-Mann-Whitney)		234
		7.6.2 Use of the Test for Comparing the DEA Scores of Two	o Groups	235
		7.6.3 Use of the Test for Comparing the Efficient Frontiers	of Two Groups	236
		7.6.4 Bilateral Comparisons Using DEA		236
		7.6.5 An Example of Bilateral Comparisons in DEA		237
		7.6.6 Evaluating Efficiencies of Different Organization Form	S	238
	7.7	Summary of Chapter 7		240
	7.8	Notes and Selected Bibliography	:	240
	7.9	Related DEA-Solver Models for Chapter 7		240
	7.10	Problem Supplement for Chapter 7	:	242
8.	ALL	OCATION MODELS	:	257
	8.1	Introduction	:	257
	8.2	Overall Efficiency with Common Prices and Costs	:	258
		8.2.1 Cost Efficiency	:	258
		8.2.2 Revenue Efficiency	:	260
		8.2.3 Profit Efficiency	:	260
		8.2.4 An Example	:	261

	8.3	New Cost Efficiency under Different Unit Prices	262
		8.3.1 A New Scheme for Evaluating Cost Efficiency	262
		8.3.2 Differences Between the Two Models	264
		8.3.3 An Empirical Example	265
		8.3.4 Extensions	267
	8.4	Decomposition of Cost Efficiency	269
		8.4.1 Loss due to Technical Inefficiency	269
		8.4.2 Loss due to Input Price Inefficiency	270
		8.4.3 Loss due to Allocative Inefficiency	271
		8.4.4 Decomposition of the Actual Cost	271
	. -	8.4.5 An Example of Decomposition of Actual Cost	272
	8.5	Summary of Chapter 8	272
	8.6	Notes and Selected Bibliography	273
	8.7	Related DEA-Solver Models for Chapter 8	274
	8.8	Problem Supplement for Chapter 8	276
9.	DAT	A VARIATIONS	283
	9.1	Introduction	283
	9.2	Sensitivity Analysis	283
		9.2.1 Degrees of Freedom	283
		9.2.2 Algorithmic Approaches	284
		9.2.3 Metric Approaches	284
		9.2.4 Multiplier Model Approaches	287
	9.3	Statistical Approaches	291
	9.4	Chance-Constrained Programming and Satisficing in DEA	298
		9.4.1 Introduction	298
		9.4.2 Satisficing in DEA	298
		9.4.3 Deterministic Equivalents	299
		9.4.4 Stochastic Efficiency	302
	9.5	Summary of Chapter 9	304
10	. SUP	ER-EFFICIENCY MODELS	309
	10.1	Introduction	309
	10.2	Radial Super-efficiency Models	310
	10.3	Non-radial Super-efficiency Models	313
		10.3.1 Definition of Non-radial Super-efficiency Measure	314
		10.3.2 Solving Super-efficiency	315
		10.3.3 Input/Output-Oriented Super-efficiency	316
		10.3.4 An Example of Non-radial Super-efficiency	316
	10.4	Extensions to Variable Returns-to-Scale	317
		10.4.1 Radial Super-efficiency Case	317
		10.4.2 Non-radial Super-efficiency Case	318
	10.5	Summary of Chapter 10	319
	10.6	Notes and Selected Bibliography	319
	10.7	Related DEA-Solver Models for Chapter 10	319
	10.8	Problem Supplement for Chapter 10	320

11.	EFFI	CIENCY CHANGE OVER TIME	323
	11.1	Introduction	323
	11.2	Window Analysis	324
		11.2.1 An Example	324
		11.2.2 Application	324
		11.2.3 Analysis	326
	11.3	Malmquist Index	328
		11.3.1 Dealing with Panel Data	328
		11.3.2 Catch-up Effect	329
		11.3.3 Frontier-shift Effect	329
		11.3.4 Malmquist Index	330
		11.3.5 The Radial MI	331
		11.3.6 The Non-radial and Slacks-based MI	333
		11.3.7 The Non-radial and Non-oriented MI	336
		11.3.8 Scale Efficiency Change	337
		11.3.9 Illustrative Examples for Model Comparisons	338
		11.3.10 Concluding Remarks	344
	11.4	Summary of Chapter 11	345
	11.5	Notes and Selected Bibliography	345
	11.6	Related DEA-Solver Models for Chapter 11	345
12.	SCA	LE ELASTICITY AND CONGESTION	349
	12.1	Introduction	349
	12.2	Scale Elasticity in Production	350
	123	Congestion	353
	12.0	12.3.1 Strong Congestion	354
		12.3.2 Weak Congestion	357
		12.3.3 Summary of Degree of Scale Economies and Congestion	360
	12.4	Illustrative Examples	360
		12.4.1 Degree of Scale Economies and Strong Congestion	360
		12.4.2 Weak vs. Strong Congestion	361
	12.5	Summary of Chapter 12	362
	12.6	Notes and Selected Ribliography	363
	10.7	Polotod DEA Solver Models for Charter 12	264
	12.7	Related DEA-Solver Models for Chapter 12	304
	12.8	Problem Supplement for Chapter 12	364
13.	UND	ESIRABLE OUTPUTS MODELS	367
	13.1	Introduction	367
	13.2	An SBM with Undesirable Outputs	368
		13.2.1 An Undesirable Output Model	368
		13.2.2 Dual Interpretations	369
		13.2.3 Returns-to-scale (RTS) Issues	370
		13.2.4 Imposing Weights to Inputs and/or Outputs	370
	13.3	Non-separable 'Good' and 'Bad' Output Model	371
	13.4	Illustrative Examples	374
		13.4.1 Separable Bad Outputs Models	374
		13.4.2 An Example with Both Separable and Non-separable Inputs/Outputs	375

13.5	o Comparisons with Other Methods	376
13.6	5 Summary of Chapter 13	378
13.7	Related DEA-Solver Models for Chapter 13	378
14. ECC	DNOMIES OF SCOPE AND CAPACITY UTILIZATION	381
14.1	Introduction	381
14 2	Economies of Scope	382
2	14.2.1 Definition	382
	14.2.2 Checking for Economies of Scope	382
	14.2.3 Checking a Virtual Merger	386
	14.2.4 Comparisons of Business Models	387
	14.2.5 Illustrative Examples	388
14.3	3 Capacity Utilization	390
	14.3.1 Fixed vs. Variable Input Resources	390
	14.3.2 Technical Capacity Utilization	391
	14.3.3 Price-Based Capacity Utilization Measure	392
	14.3.5 Illustrative Examples	396
14 4	Summary of Chanter 14	401
14.5	Notes and Selected Bibliography	401
14.5	Related DEA Solver Models for Chapter 14	402
14.7	Problem Supplement for Chapter 14	402
17.7		102
15. A D		405
15.1	Introduction	405
15.2	? Formulation	406
15.3	Coalition and Characteristic Function	409
15.4	Solution	411
	15.4.1 Coalition and Individual Contribution	411
	15.4.2 The Shapley Value	411
15.5	DEA min Game	414
15.6	5 Summary of Chapter 15	415
15.7	Notes and Selected Bibliography	416
15.8	Problem Supplement for Chapter 15	416
16. MU	LTI-STAGE USE OF PARAMETRIC AND NON-PARAMETRIC MODELS	423
16.1	Introduction	423
16.2	OLS Regressions	423
16.3	Modification and Extensions	424
16.4	Stochastic Frontier Analysis and Composed Error Models	426
16.5	DEA and Regression Combinations	427
16.6	Multi-stage DEA-Regression Combinations and its Application to Japanese	
	Banking	428
	16.6.1 Introduction	428
	16.6.2 The Multistage Framework	430
	16.6.3 An Application to Japanese Banking	433

	16.6.4 Discussion	438
	16.6.5 Summary of This Case Study	439
16.7	Summary of Chapter 16	439
16.8	Notes and Selected Bibliography	439
Appendi	ces	443
A– Linea	r Programming and Duality	443
A.1	Linear Programming and Optimal Solutions	443
A.2	Basis and Basic Solutions	443
A.3	Optimal Basic Solutions	444
A.4	Dual Problem	445
A.5	Symmetric Dual Problems	446
A.6	Complementarity Theorem	447
A.7	Farkas' Lemma and Theorem of the Alternative	448
A.8	Strong Theorem of Complementarity	449
A.9	Linear Programming and Duality in General Form	451
B– Intro	duction to DEA-Solver	454
B.1	Platform	454
B.2	Installation of DEA-Solver	454
B.3	Notation of DEA Models	454
B.4	Included DEA Models	456
B.5	Preparation of the Data File	456
	B.5.1 The CCR, BCC, IRS, DRS, GRS, SBM, Super-Efficiency, Scale Elasticit	:у,
	Congestion and FDH Models	456
	B.5.2 The AR Model	457
	B.5.3 The ARG Model	458
	B.5.4 The NCN and NDSC Models	459
	B.5.5 The DND Model B.5.6 The CAT SYS and Bilateral Models	400
	B.5.7 The Cost and New-Cost Models	461
	B.5.8 The Revenue and New-Revenue Models	462
	B.5.9 The Profit, New-Profit and Ratio Models	462
	B.5.10 The Window and Malmquist Models	462
	B.5.11 The Hybrid Model	463
	B.5.12 Weighted SBM Model	464
	B.5.13 The Bad Outputs Model	465
DC	D.5.14 The Non-separable Outputs Model	405
B.0	Starting DEA-Solver	400
B.7	Results	466
B.8	Data Limitations	4/3
	B.8.1 Problem Size B.8.2 Inappropriate Data for Each Model	473
R 0	Sample Problems and Results	47F
D.9 P 10		175
0.10	B.10.1 Models that Require Numbers to be Supplied through Keyboard	475

	Contents	xv
B.10.2 Summary of Headings to Inputs/Outputs		475
C– Bibliography		477
Index		479
Index		
		483

List of Tables

1.1	Single Input and Single Output Case	3
1.2	Efficiency	5
1.3	Two Inputs and One Output Case	6
1.4	One Input and Two Outputs Case	8
1.5	Hospital Case	12
1.6	Comparisons of Fixed vs. Variable Weights	13
1.7	Optimal Weights for Hospitals A and \overline{B}	18
2.1	Example 2.1	26
2.2	Results of Example 2.1	27
2.3	Example 2.2	28
2.4	Results of Example 2.2	29
3.1	Primal and Dual Correspondences	44
3.2	Example 3.1	53
3.3	Results of Example 3.1	58
3.4	Problem for Phase III Process	61
3.5	CCR-Score, Reference Set, Slacks and % Change	62
3.6	State-mandated Excellence Standards on Student Outcomes	67
3.7	Non-Discretionary Inputs	67
3.8	Worksheets Containing Main Results	71
3.9	Data and Scores of 5 Stores	78
3.10	Optimal Weights and Slacks	79
3.11	CCR-projection in Input and Output Orientations	81
4.1	Primal and Dual Correspondences in BCC Model	92
4.2	Data and Results of Example 4.1	96
4.3	Data and Results of CCR and SBM	107
4.4	A Comparison: Hybrid, CCR and SBM	111
4.5	Measures of Inefficiency: (Hybrid)	112
4.6	Summary of Model Characteristics	115
4.7	Decomposition of Efficiency Score	129
5.1	Decomposition of Technical Efficiency	155
5.2	Data of 11 Regional and 9 City Banks*	157

5.3	Efficiencies and Returns to Scale	158
5.4	Weights, Slacks and Projections	160
5.5	Efficiency of Projected and Merged Banks	160
5.6	Results of Input-oriented/Output-oriented BCC Cases	174
6.1	Data for 14 Hospitals	181
6.2	Efficiency and Weight of 14 Hospitals by CCR Model	182
6.3	Efficiency and Weight of 14 Hospitals with Assurance Region	
	Method	182
6.4	Efficiency of 14 Hospitals by CR (Cone-Ratio) and CCR Mod-	
	els	188
6.5	Number of Bank Failures (through 10-31-88)	191
6.6	Inputs and Outputs	192
6.7	CCR and Cone-Ratio Efficiency Scores (1984, 1985)*	193
6.8	Printout for Cone-Ratio CCR Model - Interstate Bank of Fort	
	Worth, 1985.	195
6.9	Scores (S_{ii}) of 10 Sites (A-J) with respect to 18 Criteria (C1-	
	C18)	198
6.10	Statistics of Weights assigned the 18 Criteria (C1-C18) by 18	
	Council Members	200
6.11	Averages and Medians of Scores of the 10 Sites	201
7.1	Data for Public Libraries in Tokyo	220
7.2	Efficiency of Libraries by CCR and NCN	221
7.3	Data of 12 Japanese Baseball Teams in 1993	225
7.4	Projection of Attendance by CCR and Bounded Models	226
7.5	Categorization of Libraries	228
7.6	Nine DMUs with Three Category Levels	230
7.7	Comparisons of Stores in Two Systems	234
7.8	Comparisons of Two Systems	234
7.9	Example of Bilateral Comparisons	238
8.1	Sample Data for Allocative Efficiency	261
8.2	Efficiencies	261
8.3	Comparison of Traditional and New Scheme	265
8.4	Data for 12 Hospitals	266
8.5	New Data Set and Efficiencies	266
8.6	Decomposition of Actual Cost	272
9.1	Data for a Sensitivity Analysis	289
9.2	Initial Solutions	290
9.3	Results of 5% Data Variations	290
9.4	OLS Regression Estimates without Dummy Variables	294
9.5	Stochastic Frontier Regression Estimates without Dummy Vari-	
	ables	295
9.6	OLS Regression Estimates without Dummy Variables on DEA-	
	efficient DMUs	296
9.7	Stochastic Frontier Regression Estimates without Dummy Vari-	
	ables on DEA-efficient DMUs	297

10.1	Test Data	311
10.2	Andersen-Petersen Ranking*	312
10.3	Non-radial Super-efficiency	317
10.4	Data for Super-efficiency	320
10.5	Super-efficiency Scores under Variable RTS	321
10.6	Super-efficiency Scores under Constant RTS	321
11.1	Window Analysis: 56 DMUs in U.S. Army Recruitment Bat-	
	talions 3 Outputs - 10 Inputs	325
11.2	Example 1	339
11.3	Input-oriented Scores	339
11.4	Catch-up, Frontier-shift and Malmquist Index	339
11.5	Example 2	340
11.6	Example 3	342
11.7	Comparisons	343
11.8	Example 4	343
11.9	Results by the Non-oriented Non-radial Model	344
12.1	Example 1	361
12.2	Example 2	362
12.3	BCC-O Results	362
12.4	Congestion Results	363
13.1	Separable Bad Outputs Case: Data set	374
13.2	Separable Bad Outputs Case: Results	375
13.3	Non-Separable Inputs/Outputs Case: Data Set	376
13.4	Non-Separable Inputs/Outputs Case: Decomposition of Inef- ficiency	377
14.1	Data for Groups 1 and 2 as Specialized and Group 3 as Diver-	
	sified Firms	389
14.2	Twenty Virtual Diversified Firms	390
14.3	Efficiency Score and Degree of Economies of Scope	390
14.4	Data for 12 Hospitals	397
14.5	Technical Capacity Utilization	398
14.6	Price-Based Data Set	398
14.7	Profits and Losses	399
14.8	Comparisons of Current and Maximum Profits	399
15.1	Score Matrix	405
15.2	Division of Reward based on Fixed Weights	406
15.3	Optimal Rewards with Optimal Weights	407
15.4	Normalized Score Matrix	409
15.5	Coalition and Characteristic Function (1)	410
15.6	Coalition and Characteristic Function (2)	411
15.7	Each Member's Marginal Contribution to Coalitions	412
15.8	The Shapley Value	413
15.9	Division of Reward based on Shapley Value	413
15.10	Single Players' Values for the Min Game Case	416
15.11	Coalitions' Values for the Min Game Case (1)	416

15.12	Coalitions' Values for the Min Game Case (2)	417
15.13	The Shapley Value for the Min Game Case	418
15.14	Data of 3 Shops	418
15.15	Single Players' Values of the Market Arcade Game	419
15.16	Coalitions' Values of the Market Arcade Game	419
15.17	The Shapley Value of the Market Arcade Game	419
15.18	Characteristic Function Values subject to the AR Constraints	420
15.19	The Shapley Value for the AR Case	420
16.1	Stochastic Frontier Estimation Results	436
16.2	Comparison of the Initial and Final Efficiency Scores	437
A.1	Symmetric Primal-Dual Problem	447
A.2	General Form of Duality Relation	452
B.1	Window Analysis by Three Adjacent Years	469
B.2	Sample Data of Scale Elasticity	471
B.3	Models Requiring Numbers Through Keyboard	475
B.4	Headings to Inputs/Outputs	476