Contents

List of figures and tables	xii
Preface	xiii

1

30

1 Multivariate analysis and the linear regression model

- 1.1 Introduction 1
- 1.2 Existence of a solution to the normal equation 7
- 1.3 The concept of wide-sense conditional expectation 10
- 1.4 Conditional expectation with normal variables 14
- 1.5 The relation between wide-sense and strict-sense conditional expectation 15
- 1.6 Conditional means and minimum mean-square error 17
- 1.7 Bayes estimation 20
- 1.8 The relation between Bayes and Gauss–Markov estimation in the case of a single independent variable 23
- 1.9 Exercises 27

2 Least-squares and Gauss-Markov theory

- 2.1 Least-squares theory 30
- 2.2 Principles of estimation 31
- 2.3 The concept of a generalized inverse of a matrix 33
- 2.4 The matrix Cauchy–Schwarz inequality and an extension 35
- 2.5 Gauss-Markov theory 37
- 2.6 The relation between Gauss–Markov and least-squares estimators 41
- 2.7 Minimum-bias estimation 49
- 2.8 Multicollinearity and the imposition of dummy linear restrictions 51
- 2.9 Specification error 55
- 2.10 Exercises 60

x Contents

3 Multicollinearity and reduced-rank estimation

- Introduction 65 3.1
- Singular-value decomposition of a matrix 65 3.2
- 3.3 The condition number of a matrix 68
- 3.4 The Eckart–Young theorem 70
- 3.5 Reduced-rank estimation 81
- 3.6 Exercises 86

The treatment of linear restrictions 4

- Estimation subject to linear restrictions 88 4.1
- 4.2 Linear aggregation and duality 92
- 4.3 Testing linear restrictions 101
- 4.4 Reduction of mean-square error by imposition of linear restrictions 106
- 4.5 Uncertain linear restrictions 108
- 4.6 Properties of the generalized ridge estimator 109
- Comparison of restricted and generalized ridge estimators 112 4.7
- Appendix (to Section 4.4): Guide to the computation of 4Apercentage points of the noncentral F distribution 115
- Exercises 122 4.8

5 Stein estimation

- Stein's theorem and the regression model 126 5.1
- 5.2 Lemmas underlying the James-Stein theorem 132
- 5.3 Some further developments of Stein estimation 138
- 5.4 Exercises 141

6 Autocorrelation of residuals – 1

- The first-order autoregressive model 143 6.1
- Efficiency of trend estimation: the ordinary least-squares 6.2 estimator 147
- Efficiency of trend estimation: the Cochrane-Orcutt 6.3 estimator 154
- 6.4 Efficiency of trend estimation: the Prais-Winsten weighted-difference estimator 157
- 6.5 Efficiency of trend estimation: the Prais-Winsten first-difference estimator 161
- Discussion of the literature 162 6.6
- Exercises 165 6.7

7 Autocorrelation of residuals – 2

7.1 Anderson models 167

88

143

126

167

٠,

	7.2	Testing for autocorrelation: Anderson's theorem and		
		the Durbin–Watson test 177		
	7.3	Distribution and beta approximation of the		
		Durbin–Watson statistic 189		
	7.4	Bias in estimation of sampling variances 196		
	7.5	Exercises 200		
8	Sim	ultaneous-equations estimation	202	
	8.1	The identification problem 202	202	
	8.2	2 Anderson and Rubin's "limited-information		
		maximum-likelihood" (LIML) method. 1:		
		the handling of linear restrictions 210		
	8.3	Anderson and Rubin's "limited-information		
		maximum-likelihood" method, 2: constrained		
		maximization of the likelihood function 215		
	8.4	The contributions of Basmann and Theil 223		
	8.5	Exact properties of simultaneous-equations estimators 238		
	8.6	Approximations to finite-sample distributions 251		
	8.7	Recursive models 268		
	8.8	Exercises 283		
9	Solu	tions to the exercises	287	
	9.1	Chapter 1 287		
	9.2	Chapter 2 294		
	9.3	Chapter 3 304		
	9.4	Chapter 4 309		
	9.5	Chapter 5 318		
	9.6	Chapter 6 323		
	9.7	Chapter 7 329		
	9.8	Chapter 8 334		
	Notes		240	
	Biblis	aranhy	349	
	D 10110	згирпу	357	
	inaex		385	